
 1 

 

H2020 program The Exposome Project for Health and Occupational Research 

Grant agreement 
number 

874703 

Title 
Report on the inventory of Exposure-Time-Response (ETR) models for 
EPHOR 

Date  2022 

Responsible author  Dr Susan Peters 

E-mail s.peters@uu.nl 

Co-authors Wenxin Wan (UU) 

 Dr. Lützen Portengen (UU) 

 Dr. Tanja Krone (TNO) 

 Prof. Roel Vermeulen (UU) 



 2 

Contents 

Preamble ................................................................................................................................................. 2 

1. Exposure-Time-Response relations in epidemiological research .............................................. 3 

1.1 Deficiencies of using cumulative exposure ................................................................................. 3 

1.2 Latency and exposure lagging ..................................................................................................... 4 

1.3 Time windows ............................................................................................................................... 4 

1.4 Multistage models ........................................................................................................................ 5 

1.5 Research objectives ...................................................................................................................... 6 

2. Development of the methods inventory .............................................................................................. 6 

3. Selected ETR modelling approaches .................................................................................................. 7 

Exposure rate models .......................................................................................................................... 8 

Distributed lag models ........................................................................................................................ 9 

4. Summary ....................................................................................................................................... 10 

References ............................................................................................................................................ 14 

 

 

 

  



 3 

1. Exposure-Time-Response relations in epidemiological research 

1.1 Deficiencies of using cumulative exposure 

In epidemiologic modelling of exposure-response relations, researchers often summarise a subject’s 

exposure history using the metric of cumulative exposure (CE), i.e., the integral of (time-specific) 

intensity of exposure over the full exposure history (White et al., 2008). Although CE is by far the most 

often used metric for epidemiologic analyses of chronic diseases, two assumptions underlying its 

validity are often ignored: i) stability of effects, i.e., the effects of exposure on disease incidence are the 

same, irrespective of when the exposure occurred; and ii) independence of effects, i.e., the effects of 

the exposure incurred at one time point do not affect the effects at other time points.  

For studies with a short time span (e.g., as in experimental toxicology), CE may be an appropriate 

summary measure of the exposure history, but for studies with more sustained exposures, the use of CE 

will obscure the complicated relations between exposure, dose, and disease risks (de Vocht et al., 2015). 

For example, a worker subjected to low level exposure over a long period of time (e.g., 1 ppm-year over 

20 years) could well be at a different risk than a worker exposed to high exposure levels over a short 

period (e.g., 20 ppm for just one year) (White et al., 2008). Such differences may reflect a non-linear 

exposure-response relation (e.g., a no-effect level), but could also be due to possible age-related changes 

in physiology affecting exposure uptake and metabolism (Kim et al., 2006). Richardson (2008) showed 

that, conditioned on exposure intensity, the relation between benzene and leukaemia mortality seemed 

to be much stronger for benzene exposure accrued at older ages (≥45 years) than for that at younger 

ages. For occupational exposure to sparsely ionizing radiation, several epidemiologic studies have 

indicated that protracted or fractionated exposures at low dose rates may result in lower risks of cancer 

than short-lived intense exposures for the same total dose (Jacob et al., 2009). 

On the other hand, dependence of effects over several time points, as is likely to occur for allergic 

diseases (Dotson et al., 2015), could be harder to determine, and such effects are often overlooked with 

common modelling approaches (Basagana and Barrera-Gomez, 2022). In practice, rather than 

completely ignoring these time-related aspects, researchers tend to approach these issues in a simple 

manner, for example, by assessing exposure effect modification by time-since-last-exposure or average 

exposure intensity using stratified analysis. However, such simple approaches may fail to provide 

necessary insights into the complex interplay between exposure, time, and response, as the results of 

these ad-hoc approaches are often based on approximations (e.g., average intensity) and differences 

between estimated effects are often difficult to comprehensively evaluate (Kriebel et al., 2007, de Vocht 

et al., 2015). 
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1.2 Latency and exposure lagging 

Exposure latency is the term often applied to the time interval between exposure and disease 

manifestation or recognition. Rothman defined latency as the period from disease initiation to 

manifestation (Rothman, 1981). This is in line with the idea that there is some period of time when the 

disease exists in a “hidden” state in an individual. A related concept is induction time, which can be 

defined as the period from first exposure to disease initiation. The sum of the latency and induction 

intervals is what was referred to as the empirical induction time (Rothman, 1981), and by exposure 

lagging, researchers aim to obtain better estimation of the latency period (or to distinguish the induction 

and latency periods). As an example, Checkoway et al., (1997) reported results that suggest a stronger 

association between silica exposure and respiratory disease under a 15-year lag than without any lag. 

Some techniques to take into account the latency or induction time were applied, including exposure 

truncation at either some fixed age or fixed time interval since first exposure; and lag exposures by 

some assumed latency interval (Checkoway et al., 1990, Rothman, 1981). However, these approaches 

require assumptions on etiologically “relevant” latency periods by excluding “irrelevant periods” but 

sacrifice information of exposure history either by subject exclusion or exposure truncation. Moreover, 

the selection of lag periods could be arbitrary, limiting the interpretation of results. 

 

1.3 Time windows 

A natural extension of the lagging approach is to estimate effects related to exposures that occur during 

pre-specified time periods, or time windows. For a particular outcome, exposures occurred at other 

periods could be considered less important than exposures during a critical time window. An illustration 

would be that exposures only show effects on birth defects during some particular periods of fetal 

development (Selevan et al., 2000). The life course approach has been suggested as a conceptual 

framework for guiding the investigation into the temporal relationship between long-term exposure and 

risk of chronic diseases (Kuh et al., 2003). The approach highlights the significance of identifying 

critical periods (a limited time window where an exposure can have an effect on the outcome) and 

sensitive periods (a time window where the effect of exposure is stronger than other periods) (Kuh et 

al., 2003). Identifying different time windows that are relevant in occupational epidemiology, as well 

as taking a life course approach provides opportunities to systematically explore the complex temporal 

associations, given complete exposure history data are available (Vineis et al., 2013b).  

The life course approach also takes into account more than just single exposures. Kuh et al., (2003) 

used several chain of risk models to refer to a sequence of linked exposures that lead to increased disease 

risk because one exposure tends to lead to another. In these causal chain models, exposures could act 

independently (simple accumulation model), but can also be “clustered” via a shared cause 

(accumulation with risk clustering model). In the additive chain of risk model, exposure can act both as 
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mediating factors (exposures in between the pathway of another exposure-response relationship) and 

modifying factors (exposures having effect on another set of exposure and outcome, differentiating the 

exposure-response relationships), and in the trigger chain of risk model, exposures are described to have 

this “trigger effect” describing the situation where earlier exposures have no effect on the disease risk 

without the final link in the chain that precipitates disease onset (Kuh et al., 2003). Although some 

statistical approaches have been proposed to validate life course models for different research questions 

(Petersen et al., 2021, Madathil et al., 2018), application in an occupational epidemiological setting has 

been limited and the interpretation of effect of multiple exposures at multiple time windows could be 

very complicated (Vineis et al., 2013a). 

1.4 Multistage models 

Multistage models for carcinogenesis were introduced in the 1950s to explain the pattern of age-specific 

mortality curves for many adult-onset carcinomas. Results from these models indicated that many age-

specific mortality curves are consistent with carcinogenesis being the result of an accumulation of 

mutations, an observation that was reinforced by recent studies showing a correlation between the 

number of stem cell divisions and cancer incidence rates for several tissues (Tomasetti et al., 2017, 

Tomasetti and Vogelstein, 2015). These observations could suggest that accumulation of randomly 

occurring mutations at critical gene loci could be important in carcinogenesis because mutations mostly 

occur during cell division. The best known multistage model is the Armitage–Doll model (Armitage 

and Doll, 1954), which continues to be a framework for understanding spontaneous carcinogenesis and 

the temporal evolution of disease risk with carcinogenic exposures with varying intensity (Day and 

Brown, 1980, Brown and Chu, 1983). Richardson (2008) discussed the multistage model in the context 

of occupational exposure to benzene exposure and risk of leukaemia, where the temporal effects could 

be modelled as a multistage process. The result suggested benzene exposure affects the penultimate 

stage in disease induction. 

The two-stage clonal expansion (2SCE) model, also known as the Moolgavkar–Venzon–Knudson 

(MVK) model, is based on three influential ideas from cancer biology. These are, in chronological order: 

i) the concept of initiation-promotion-progression observed from experiments in chemical 

carcinogenesis (Berenblum and Shubik, 1947) in the late 1940s; ii) the observation that the age-specific 

mortality curves of many adult carcinomas could be explained by a multistage model (Moolgavkar and 

Venzon, 1979); and iii) Knudson’s two-hit hypothesis for embryonal tumours, such as retinoblastoma 

(Knudson et al., 1975, Hethcote and Knudson, 1978). The latter hypothesis suggested that most tumour 

suppressor genes require both alleles to be inactivated, either through mutations or through epigenetic 

silencing, to cause a phenotypic change (Knudson et al., 1975). The 2SCE model and its generalizations 

allow for clonal expansion of intermediate cells on the pathway to cancer via a linear birth–death 

process, and it was applied to study the individual effects of asbestos and silica on lung cancer (Zeka et 
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al., 2011), where the results suggested strong evidence for an early effect of asbestos, but for silica, an 

early and less evidently late effect on lung cancer. Richardson (2009) also applied the 2SCE in the 

context of occupational exposure to benzene exposure and leukaemia mortality among rubber 

hydrochloride production workers, where the effect of benzene on leukaemia risk appears to be due to 

an exposure-induced increase in the proliferation of initiated cells. 

1.5 Research objectives 

By adopting the life-course concepts and common research topics in occupational epidemiology, we 

proposed the following research objectives that could potentially be achieved using ETR modelling 

approaches: 

1. assess the effects of different aspects of exposure history (e.g., intensity and duration) on 

disease risk;  

2. investigate the effect of temporal modifiers (e.g., time since last exposure, age at first exposure) 

on the exposure-response relationship; and  

3. evaluate the effect of time-varying exposures on different stages of disease development.  

In this report we aimed to provide some background of ETR and an inventory of statistical models for 

ETR modelling in occupational epidemiology.  

2. Development of the methods inventory 

To develop an inventory of ETR methods, we first selected 14 studies based on consultation with two 

experts - both have more than 10 years’ experience in biostatistics/occupational epidemiology (LP) and 

in statistics (TK). Those 14 papers were considered to represent state-of-the-art examples illustrating 

the development and application of ETR-related approaches in epidemiologic research, covering a wide 

range of methods, namely: multi-state models (Jackson, 2011, Jackson et al., 2003), multi-stage clonal 

expansion models (Zeka et al., 2011, Richardson, 2008), hierarchical regression models (Richardson et 

al., 2011), exposure rate model (Richardson et al., 2012), compartmental hidden Markov model 

(Chadeau-Hyam et al., 2014), extensions of weighted cumulative index (Lacourt et al., 2017, Mauff et 

al., 2017, Wagner et al., 2021), trajectory approaches (Lévêque et al., 2020), structured Bayesian 

regression tree pairs (Mork and Wilson, 2021), “flexible modelling” (Danieli et al., 2019), and the 

reconstruction of exposure metrics (Wang et al., 2016).  

Based on those 14 papers, we widened our search grid by using the freely available online platform 

“Connected Papers” (Connected Papers, 2022). This platform was used because it was expected to 

provide relevant ETR model papers in a more efficient way than the keyword-based systematic 
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literature search, which would be time-consuming and outside the scope of this report. The artificial 

intelligence (AI) algorithm that it uses is based on the concepts of co-citation and bibliographic coupling 

to create the similarity metric, and takes into account the fact that papers that do not directly cite each 

other may have similar bibliographic profiles (Ammar et al., 2018). Connected Papers mines the 

Semantic Scholar database (covering >200 million academic papers) and provides 41 papers that are 

judged by the AI algorithm to be similar to the single input paper.  

We acknowledge that our review was not meant to be exhaustive, but readers with interest in more 

technical and conceptual details on the ETR modelling can refer to other papers (Chen et al., 2015, 

Buckley et al., 2019, Sanchez et al., 2011, Thomas, 1988) as well as the 14 “key” papers cited in the 

method section. 

Using the 14 papers and the “Connected Papers” platform, we obtained 447 unique papers that were 

considered possibly relevant for ETR analyses. We additionally checked the citations from all 14 

original papers to include more potentially relevant papers. We screened the collected papers based on 

the following eligibility criteria: 

a) a statistical approach to allow estimation of the effects of time-resolved exposures could be 

identified either in the abstract or method section; 

b) the statistical approach was applied or showed applicability to model non-communicable 

diseases as an outcome (e.g., cancer); and 

c) only original research articles published in English (including pre-prints). 

 

3. Selected ETR modelling approaches 

Based on the aforementioned approach to develop the inventory, we retained 189 papers, covering 24 

implementations that could be used to model ETR relationships. For each implementation, we specified 

the modelling goal, the key reference(s), key developer, the available software for model 

implementation, and comments on its utility. The inventory can be found at the end of this report (Table 

1).  

Only a few of the methods have been applied somewhat more widely and no single method can be 

considered as the standard analytical approach. From a practical point of view, a “good” method should: 

i) be able to account for the full exposure history in as much detail as possible; ii) produce interpretable 

results; and iii) be relatively easy to use for non-experts. Among the collected ETR models in this 

inventory, we would like to highlight two approaches, namely exposure rate models and distributed lag 

models, that show relatively better utility compared with the others. It is worth noting that method 
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selection is highly study-specific and should be primarily dependent on the research goals and features 

of data. In the following section we provide brief descriptions for the two models.  

Exposure rate models 

Researchers may indirectly assess the effect of temporal factors on the ETR by investigating whether 

secondary exposure indices (e.g., exposure duration or exposure intensity) or other temporal factors 

(e.g., time-since-last/first exposure, age-at-first exposure) modify the estimated effect of CE. Such 

approaches were mostly applied to understand the dynamics aspects of smoking on lung cancer risk 

(Vlaanderen et al., 2014, Lubin et al., 2007, Lubin and Caporaso, 2006). Using 𝑥𝑖(𝑡)  to describe 

possibly time-varying exposure for subject i, and with notation similar to that in Gasparrini (2014), we 

can describe the excess (absolute or relative) risk at some time t as a (possibly non-linear) function 𝑠(. ) 

of 𝑥𝑖(𝑡) that is parametrized by an (unknown) vector of parameters η. As an example, for a linear effect 

of cumulative exposure on the log-hazard rate, 𝑠(. ) could be defined as: 

𝑠(𝑥𝑖(. ), 𝑡, 𝜂) = 𝑒𝑥𝑝(𝜂 ∫ 𝑥𝑖(𝑢)
𝑡

0
𝑑𝑢)   equation (1) 

where ∫ 𝑥𝑖(𝑢)
𝑡

0
𝑑𝑢  corresponds to the usual definition of cumulative exposure. Without loss of 

generalization and to conform to most practical implementations, we will focus on a time-discretized 

version of this model for the remainder: 

𝑠(𝑥𝑖(. ), 𝑡, 𝜂) = 𝑓(𝜂 ∑ 𝑥𝑖(𝑗)
𝑡
𝑗=0 )     equation (2) 

One way to investigate the effects of different exposure patterns on estimated excess risks is by allowing 

the slope coefficient for cumulative exposure in this model to depend on individual-level exposure 

characteristics: 

𝑠(𝑥𝑖(. ), 𝑡, 𝑔(. ), 𝑧𝑖 , 𝜂) = 𝑓(𝑔(𝑧𝑖, 𝜂) ∑ 𝑥𝑖(𝑗)
𝑡
𝑗=0 )        equation (3) 

 

where 𝑔(. ) could be a fully parametric or semi-parametric model and 𝑧𝑖 the average intensity or time 

since last exposure. An extension of this model was suggested by Richardson et al. (2012) to account 

for both between- and within-person variation in exposure over time. A general formulation of the 

model is given as: 

𝑠(𝑥𝑖(. ), 𝑔(. ), 𝑡, 𝜂) = 𝑓(∑ 𝑔(𝑥𝑖(𝑗), 𝜂
𝑡
𝑗=0 )       equation (4) 



 9 

The proposed model can be implemented using SAS PROC NLP software with codes provided in the 

paper (Richardson et al., 2012) and they provide a concrete example where the effect of cumulative 

exposure is modified by exposure intensity as follows: 

 

𝑠(𝑥𝑖(. ), 𝑡, 𝜂) = 𝑓(∑ 𝜂1 exp(𝜂2𝑥𝑖(𝑗)) ∗ 𝑥𝑖(𝑗)
𝑡
𝑗=0 )      equation (5) 

 

Note the similarity to equation (4) when individual exposure is the same for each exposure period. The 

model was applied to study the effect of radon exposure on lung cancer mortality with a cohort of 

uranium miners (Richardson et al., 2012). Exposure rate models refine the well-established regression 

model to efficiently account for exposure increments and their potential impact on disease risk over 

time by more fully incorporating available information on time-related variation in exposure 

(Vermeulen and Chadeau-Hyam, 2012), provided that such detailed exposure information is available. 

It is likely to be useful for researchers that want to understand how differences in exposure intensity 

may affect the estimated excess risk per unit of exposure. 

Distributed lag models 

A general model that considers the possible different effects of exposures accrued at different timepoints 

can be formulated as follows:  

𝑠(𝑥𝑖(. ), 𝑡, 𝑤(), 𝜂) = 𝑓(∑ 𝑔(𝑥𝑖(𝑗), 𝑤(𝑥𝑖(𝑗),
𝑡
𝑗=0 𝜂)))      equation (6) 

 

with 𝑤() a suitably specified weighing function. Assuming weights that only depend on the timepoint 

and exposure effects that depend linearly on the exposure intensity this model can be simplified as: 

 

𝑠(𝑥𝑖(. ), 𝑡, 𝑤(), 𝜂) = 𝑓(∑ 𝑤(𝑗, 𝜂)𝑥𝑖(𝑗)
𝑡
𝑗=0 )              equation (7) 

With a limited number of discrete time periods and relatively low between-period exposure correlations, 

the model can be fitted using standard software that does not put any restrictions on the time-specific 

regression weights, but in most other cases regularization will be needed to avoid imprecise and unstable 

effect estimates (Schildcrout and Heagerty, 2005). This can be achieved using basis expansion methods 

and software that allows for penalized estimation. 

This model is most often used to investigate exposure latency, which requires defining the timepoints 

in terms of the number of time units (e.g., years) preceding the health outcome assessment, i.e.: 
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𝑠(𝑥𝑖(. ), 𝑙, 𝑤(), 𝜂) = 𝑓(∑ 𝑤(𝑙, 𝜂)𝑥𝑖(𝑡 − 𝑙)𝑡
𝑙=0 )        equation (8) 

This model is called the dynamic lag model and was originally developed in econometrics (Almon, 

1965) but has also become popular for studying possible delayed health effects associated with 

environmental/occupational risk factors (Muggeo and Hajat, 2009, McClean et al., 2007, Jung et al., 

2022, Gasparrini, 2014, Schwartz, 2000).  

The assumption of a linear effect of exposure on the outcome can be relaxed, by using a similar re-

parametrisation of the model structure shown in equation (8), resulting in the class of distributed lag 

non-linear models (DLNMs). An extensive overview of the different model structures and approaches 

to estimation is provided by (Gasparrini et al., 2010). 

Since its development, it has been used relatively widely to assess relationships between environmental 

exposures and possibly delayed effects. For example, with an occupational cohort, researchers applied 

DLNM to explore the temporal associations between silica exposure and lung cancer mortality 

(Neophytou et al., 2018). The interpretation of results from DLNM models is made easier thanks to the 

well-developed R package dlnm (Gasparrini, 2011), that includes many built-in visualisations including 

a 3D graph to show the full estimated non-linear exposure-lag-response surface. 

4. Summary 

Between the two modelling structures, exposure rate modelling could be a useful tool to account for the 

interplay between exposure intensity and duration (the first proposed research objective), and the DLM 

framework could incorporate exposure lags and age at exposure, and showed relatively good 

applicability and flexibility to be applied in evaluating the effect of temporal factors (the second/third 

research objective).  

We also noted that the multistage models, with the purpose of evaluating the effect of time-varying 

exposures on different stages of disease development (the fourth research objective), usually require 

detailed data on different disease status, and the type of outcome with the included biological models 

is usually restricted to cancer (e.g., with 2SCE). Moreover, only very few studies have applied biology-

based models in occupational epidemiologic analyses, making it very difficult to judge their 

applicability for the purpose of this report. Interested readers could refer to Moolgavkar and Luebeck 

(2020) for more detailed introduction.  

Overall, this report provides a background in ETR modelling, an inventory of ETR models, and a brief 

discussion of the most relevant model structures. Based on this report, researchers have an overview of 
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ETR methods that are listed in Table 1 and select the appropriate one(s) based on different research 

goals and dataset features. We refrained from providing more general recommendations because of the 

complex nature of ETR modelling and the limited number of studies in which these methods were used 

or validated for occupational epidemiology. Validation of the utility of DLM models using real-world 

datasets will be carried out in 2023 and will likely provide more insights into the ways ETR models 

could be applied within the scope of EPHOR and the working-life exposome.  
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Table 1. Inventory of the Exposure-Time-Response (ETR) models  

Model type Algorithm Goal Reference (DOI) 
First 

Author 
Implementation Comments 

Exposure Rate 

Models 

Maximum Likelihood Modification of cumulative 

exposure effects by duration and 
timing of exposure 

10.1097/EDE.0b013e31826c3149 Richardson, 

D.B. 

SAS script   

Linear 

Distributed Lag 

Model 

Piecewise 

constant/Bilinear/Exponential 

decay 

Latency analysis/Critical exposure 

windows for a single exposure 

10.1002/(sici)1097-

0274(199903)35:3<246::aid-

ajim4>3.0.co;2-6; 

10.1136/oem.2004.017368; 

10.1007/s10654-020-00658-9 

Langholz, B. Epicure scripts 

available on request 

 

Hierarchical Latency analysis/Critical exposure 
windows for a single exposure 

10.1093/aje/kwq387 Richardson, 
D.B. 

SAS script   

Regression spline + constrained 

optimization 

Latency analysis/Critical exposure 

windows for a single exposure 

10.1111/j.0006-341x.2000.01105.x; 

10.1002/sim.3701;  

10.1136/oemed-2016-104133 

Hauptmann, 

M.  

- 
 

BKMR Latency analysis/Critical exposure 
windows for a single exposure 

10.48550/arXiv.1904.12417 Wilson, A. R package regimes 
(Github) 

Only allows for gaussian 
outcomes 

Bayesian Latency analysis/Critical exposure 

windows for a single exposure, 

allowing for interaction with a 

categorical variable 

10.1093/biostatistics/kxx002 Wilson, A. R package regimes 

(Github) 

Only allows for gaussian 

outcomes 

Bayesian+postprocessing to 

identify critical window 

Similar to a tree-based approach 10.1097/EDE.0000000000001428 Johnson, M. - Not much detail provided on 

how the method is 
implemented. 

Combination of mixed model & 

spline WCIE 

Standard WCIE approach with 

modelled exposure in a longitudinal 

stiudy design for the outcome 

10.1186/s12874-021-01403-w Wagner, M. R code (Github) The WCIE is estimated using 

standard natural regression 

splines 

Non-Linear 

Distributed Lag 

Model 

Tensor-product splines 

Identify critical exposure window 

of single exposure, allowing for 

non-linear exposure effect 

10.1002/sim.3354 Berhane, K. Epicure scripts 
available on request 

 

Cross-basis regression splines 10.1002/sim.3940; 

10.18637/JSS.V043.I08 

Gasparrini, 

A. 

R package dlnm 

(CRAN) 

 

Cross-basis penalized splines 10.1111/biom.12645 Gasparrini, 

A. 

R package dlnm 

(CRAN) 

 

Functional model 10.48550/arXiv.2103.12822 Lenart, P. uses package fda Only allows for gaussian 

outcomes. Package refund 

allows binomial outcomes 
and seems easier. 

Distributed Lag 

Mixture Models 

Random forest Identify critical exposure window 

of single exposure, allowing for 
non-linear exposure effect 

10.1111/biom.13568 Mork, D. R package dlmtree 

(CRAN) 

Allows for gaussian 

outcomes 
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Model type Algorithm Goal Reference (DOI) 
First 

Author 
Implementation Comments 

Shared trees/Gaussian process Identify critical exposure window 
of single exposure, allowing for 

between-subject heterogeneity 

10.48550/arXiv.2109.13763 Mork, D. R package dlmtree 
(CRAN) 

  

Bayesian Identify critical exposure windows 

of 2 exposures, allowing for non-
linear exposure effect and 

interactions 

10.1111/rssc.12297 Yin-Hsiu 

Chen 

R package glm+rjags 

(CRAN) 

  

Gaussian Processes Variable selection 10.1093/biostatistics/kxz006 Warren, J.L. R package CWVSmix 

(Github) 

Needs extensive tuning 

Bayesian Estimate exposure-response 
functions and identify critical 

exposure windows of chemical 

mixtures 

arXiv:2107.14567 Antonelli, J. R package 
BayesianDLAG 

(Github) 

Only allows for gaussian 
outcomes 

BKMR Identify critical exposure windows 

of chemical mixtures, allowing for 

non-linear exposure effect and 
interactions 

10.1093/biostatistics/kxx036 Liu, S.H. R code (Github) Only allows for gaussian 

outcomes. Code needs 

substantial work. 

BKMR Identify critical exposure windows 

of chemical mixtures, allowing for 
non-linear exposure effect and 

interactions 

10.1214/21-AOAS1533 Wilson, A. R package regimes 

(Github) 

Only allows for gaussian 

outcomes. Default output 
only includes a plot of the 

weight function. 

Joint models Bayesian Include weighted cumulative effect 

in joint models 

10.1002/sim.7385; 

10.1002/sim.7027; 
10.18637/jss.v072.i07 

Mauff, K. R package JMbayes 

(CRAN) 

 

Two-stage models + latent class Identify exposure trajectories 

associated with risk 

10.1371/journal.pone.0236736 Lévêque, E. R package lcmm 

(CRAN) 

  

Multi-stage Two-stage clonal expansion Evaluate effect of exposure on 
different stages of carcinogenesis 

10.1093/aje/kwn284 Richardson, 
D.B. 

SAS script   

Multi-stage clonal expansion 10.1093/aje/kwn285 Richardson, 

D.B. 

package msce 

(CRAN) 

  

Multi-state 

models 

Hidden Markov Model Evaluate the effect of covariates 

(exposures) on the transition of 
different disease states 

10.1097/EDE.0000000000000032 Chadeau-

Hyam, M. 

C++ code   
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